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Abstract The Mullins effect in rubber-like materials is inherently anisotropic. However, most constitutive
models developed in the past are isotropic. These models cannot describe the anisotropic stress-softening
effect, often called the Mullins effect. In this paper a phenomenological three-dimensional anisotropic
model for the Mullins effect in incompressible rubber-like materials is developed. The terms, damage func-
tion and damage point, are introduced to facilitate the analysis of anisotropic stress softening in rubber-like
materials. A material parametric energy function which depends on the right stretch tensor and written
explicitly in terms of principal stretches and directions is postulated. The material parameters in the energy
function are symmetric second-order damage and shear-history tensors. A class of energy functions and a
specific form for the constitutive equation are proposed which appear to simplify both the analysis of the
three-dimensional model and the calculation of material constants from experimental data. The behaviour
of tensional and compressive ground-state Young’s moduli in uniaxial deformations is discussed. To further
justify our model we show that the proposed model produces a transversely anisotropic non-virgin material
in a stress-free state after a simple tension deformation. The proposed anisotropic theory is applied to sev-
eral types of homogenous deformations and the theoretical results obtained are consistent with expected
behaviour and compare well with several experimental data.

Keywords Anisotropic · Constitutive model · Mullins effect · Stress-softening

1 Introduction

When a filled rubber is subjected to cyclic loading it exhibits a stress-softening phenomenon widely known
as the Mullins effect [1]. For example, the pressure required to inflate a balloon is noticeably reduced by
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prestretching it several times prior to its primary inflation. The Mullins effect has been excellently and
comprehensively described by many authors [1–7] and hence we avoid its description here. In the past,
the Mullins effect was mainly described by isotropic models. However, there is increasing evidence that
the Mullins effect is not, in general, isotropic [1, 8]. This evidence, for example, can be found in a pure
shear experiment by Gough [9]; it was found that, after a simple tension deformation from a virgin state,
the subsequent pure shear in an orthogonal direction produced a stiffness that is almost as great as for the
virgin pure shear deformation. Further anisotropic evidence can also be found, e.g., in an homogeneous
plane-strain compression experiment by Pawelski [10]; after loading and unloading the block is rotated
by 90 degrees and compressed the material behaved almost like the virgin one which indicates that the
softening in the first direction has hardly any influence on the direction orthogonal to the first. In a simple
shear experiment of Muhr et al. [11] simple shear loadings in different directions produce different loads.

In this paper, based on the preliminary work of Shariff [12, 13], we develop a model which describes
the anisotropic behaviour of the Mullins effect, treated as a quasi-static phenomenon. We concentrate on
the Mullins effect and are not concerned with hysteresis, residual strain, thermal and viscoelastic effects.
The proposed model is purely phenomenological and does not take into account the underlying physical
structure of the material; hence it can be applied to any material exhibiting the Mullins effect.

We assume the virgin material is isotropic with respect to an undeformed and unstressed state. In
Sect. 2.2 we define the terms, damage function, which depends on the principal stretches, and damage
point, which depends on the principal directions and the history of the right stretch tensor. In Sect. 2.3
we introduce shear-history parameters which also depend on the principal directions and the history of
the right stretch tensor. To describe anisotropic stress-softening behaviour, a parametric energy function
which depends explicitly on the principal stretches and principal directions is proposed. The parameters in
the energy function are the damage tensor, which contains the damage points, and the shear-history tensor
which contains the shear-history parameters. Both tensors are second order and symmetric.

In this paper only a class of energy functions which is a subset of a wider class proposed in Sect. 3 is
considered. A specific form of this special class is employed and this form seems to simplify the analysis of
the three-dimensional model and the calculation for material constants from experimental data discussed in
Sect. 6. In Sect. 3.3 energy dissipation is shown via the Clausius–Duhem inequality by treating the damage
tensor as an internal variable. In Sect. 4 we show that tensional and compressive directional ground state
Young’s moduli in uniaxial deformations are in general different. We also reveal that the proposed model
produces a transversely anisotropic non-virgin material in a stress-free state after a simple tension defor-
mation as suggested by Horgan et al. [6]. To demonstrate the capabilities of the proposed theory, several
anisotropic results are given in Sect. 5 for several types of homogeneous deformations. These results are
also compared, qualitatively, with published experimental data. Finally, in Sect. 6, we use our model to fit
and predict, quantitatively, simple tension and pure-shear experimental data.

2 The proposed model

2.1 Basic kinematics

We first recall some essential kinematics of finite deformation of an incompressible material. Consider
a body occupying the region B0 in some reference stress-free configuration. Let A be the deformation
tensor and X a position vector of a point in B0. Under this deformation the point moves to a new position
x(X) ∈ B, where B is the current configuration of the deformed body.

The current principal stretch λi is given by

λi =
√

ei • U2ei , (1)
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where U =
√

ATA is the right stretch tensor, ei (i = 1, 2, 3) are the current principal directions of U.
We write, e.g., λi, ei, U, etc instead of λi(t), ei(t), U(t), etc to denote current variables, where t represents
the current time. Due to the incompressibility constraint the principal stretches must satisfy the relation
λ1λ2λ3 = 1.

2.2 Damage function and damage point

Damage functions are important tools for analysing stress-softening materials. In previous isotropic mod-
els [4, 5, 14] softening effects are governed by their “damage” functions and their corresponding damage
points (sometimes referred as softening points [5] or maximum-loading parameters [15]). In this section we
define a damage function g (which may depend on the material properties) such that 0 = g(1) ≤ g(x) , x >

0 , x ∈ R and g increases (strictly) monotonically as x moves away from the point x = 1.
It can be easily seen that

si,min ≤ λi ≤ si,max, (2)

where

si,max = max
0≤z≤t

√
ei • U2(z)ei , si,min = min

0≤z≤t

√
ei • U2(z)ei , (i = 1, 2, 3); (3)

the material is subjected to a deformation history up to the current time t and z denotes a running time
variable. Physically, si,max and si,min are the maximum and minimum strain values, respectively, of the
principal-direction line elements throughout the history of the deformation. Note that they are not the
maximum and minimum values of the principal stretches throughout the history of the deformation. From
the above equation it is clear that si,max ≥ 1 and si,min ≤ 1 and λi is bounded by si,max and si,min. However,
they are not the only bounds on λi. We can construct, for example, the bound

pc(si,max, si,min) ≤ si,min ≤ λi ≤ si,max ≤ pe(si,max, si,min), (4)

where for all time t2 > t1

pe(si,max, si,min) |t1≤ pe(si,max, si,min) |t2
pc(si,max, si,min) |t1≥ pc(si,max, si,min) |t2 ,

(5)

pe(si,max, si,min) ≥ 1, pc(si,max, si,min) ≤ 1 and pe(1, 1) = pc(1, 1) = 1. In general, pe �= pc and this asymmetry
between tension and compression reflects on the asymmetry behaviour of stress-softening between tension
and compression found in previous experiments [10]. An example of the functions pe and pc is

pe(si,max, si,min) = si,max + ke(1/si,min − 1),

pc(si,max, si,min) = si,min√
1 + kc(si max − 1)

,
(6)

where ke , kc ≥ 0 are material constants. In this paper we will only discuss pe and pc given by Eq. (6).
We define our damage point ai via the following:

ai =





pe(si,max, si,min) when λi >1,
pc(si,max, si,min) when λi <1,
pe(si,max, si,min)+pc(si,max, si,min)

2
when λi =1.

(7)

In view of the properties of g, it is clear that g(λi) ≤ g(ai). Physically, g(ai) can be considered as a measure
of an amount of damage. The higher the value of g(ai), the bigger the damage caused by the deformation
will be on the ei principal-direction line element.
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2.3 Shear-history parameters

There seem to be a lack of shearing experimental data to sufficiently analyse the effect of shearing on
stress-softening materials; this prevent us from being able to accurately analyse the role of shear-history
parameters in softening materials. However, previous isotropic models [4, 7] could predict experiments
(where the shear values are zero) just using the principal stretches, and in [11] an experiment regarding
the behaviour of a softening rubber material in simple shear is described. With this limited information,
we consider the shear-history parameters

b12 = b21 = v12,max + v12,min,

b23 = b32 = v23,max + v23,min , b13 = b31 = v13,max + v13,min, (8)

in our model, where

vij,max = vji,max = max0≤z≤t
ei • U2(z)ej√

ei • U2(z)ei

√
ej • U2(z)ej

≥ 0

vij,min = vji,min = min0≤z≤t
ei • U2(z)ej√

ei • U2(z)ei

√
ej • U2(z)ej

≤ 0 (i �= j : i, j = 1, 2, 3),

(9)

taking note that, e.g., b12 = b23 = b13 = 0 in uniaxial deformations in a fixed direction. Here vij,max and
vij,min are the maximum and minimum values of the cosine of the angle between the two principal-direction
line elements throughout the history of the deformation. In this paper, we propose an energy function such
that it can be easily modified to account for different types of shearing parameters if the need arises.

3 Constitutive equation

To describe anisotropic stress-softening the proposed energy function must be a function of U or λi and ei.
The damage points and shear-history parameters are introduced into the energy function via the material
parametric damage tensor D and shear-history tensor S, respectively, viz.

D =
3∑

i=1

g(ai)êi ⊗ êi (10)

and

S =
3∑

i,j=1

bijêi ⊗ êj, (11)

where we use the basis {êi} = {ei}. Here we have defined b11 = fs(b12, b13), b22 = fs(b21, b23), b33 =
fs(b31, b32), with the property fs(0, 0) = 0. This condition is imposed since we choose, for simplicity, S = 0
when b12 = b23 = b13 = 0. We note that both tensors D and S are symmetric and, in general, they are not
constant during deformation. We postulate a parametric energy function Wf of the form

Wf = W̃(U, D, S) = W̄(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, D, S). (12)

For fixed D and S the energy function Wf represents an energy function of an anisotropic elastic material
(see Sect. 3.2.1 for a clearer picture), where the anisotropic properties of the material are those which arise
from the tensors D and S. According to the work of Spencer [16], W̄ is unchanged if the deformation field,
the tensors D and S undergo a rotation which is described by a proper orthogonal tensor Q . Thus

W̄(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, D, S)

= W̄
(
λ1, λ2, λ3, Qe1 ⊗ Qe1, Qe2 ⊗ Qe2, Qe3 ⊗ Qe3, QDQT , QSQT) (13)
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The above equation holds for all proper orthogonal tensors Q and is a statement that W̄ is an isotropic
invariant of U, D and S. Hence W̄ is a function of the λ1 λ2 λ3 and the invariants of e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3,
D and S [16].

We note that our model can be easily modified to include additional material parametric tensors of the
same order or higher if it can be shown that these tensors can predict anisotropic stress-softening more
accurately.

3.1 A class of energy functions

In this paper we focus on a class of Wf that depends only on the invariants [17]

λi, ei • Dei, ei • Sei (i = 1, 2, 3), (14)

i.e.,

Wf = W(λ1, λ2, λ3, d, s), (15)

where d = (d1, d2, d3)
T = (e1 • De1, e2 • De2, e3 • De3)

T and s = (s1, s2, s3)
T = (e1 • Se1, e2 • Se2, e3 • Se3)

T .
Since the tensor D measures damage, we require, for fixed ei, Wf to decrease monotonically as di increases.
To satisfy this property we impose the condition

∂Wf

∂di
< 0 . (16)

We also impose the condition

W(1, 1, 1, d, s) = 0, (17)

so that Wf = 0 in the stress-free reference state.
This class also contains W with the properties:

(a) If a1 = λ1, a2 = λ2 and a3 = λ3 then

W(λ1, λ2, λ3, d, 0) = Ŵ(λ1, λ2, λ3) + �̃(d), (18)

where the constant �̃(d) has the property �̃(0) = 0 and Ŵ(λ1, λ2, λ3) = Ŵ(λ1, λ3, λ2) = Ŵ(λ3, λ1, λ2)

is a scalar isotropic function.
(b) When S = 0 the Biot stress is coaxial with U.

These properties are consistent with some previous models [4–6] which show that, in deformations such
as simple tension and biaxial deformations, where S = 0, the material response on a primary loading path
(defined below) can be described by an isotropic scalar function of U and the Biot stress for these defor-
mations are coaxial with U. Since Ŵ is similar to a strain-energy function of a perfectly elastic material, we
can use standard forms of the perfectly elastic strain-energy function to represent the function Ŵ. Here
we only consider a class of isotropic scalar functions which can be represented by the Valanis–Landel [18]
separable form, i.e.,

Ŵ(λ1, λ2, λ3) = r(λ1) + r(λ2) + r(λ3), (19)

where r has a specific form given by

r(λi) =
∫ λi

1

f (y)

y
dy , i = 1, 2, 3, (20)
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where f (1) = 0, f (y) > 0 for y > 1 and f (y) < 0 for y < 1 [19]. It is clear that r(1) = 0, r′(1) = 0 (where
a prime signifies differentiation with respect to the argument of the function in question), 0 = r(1) ≤ r(y)

and r(y) increases (strictly) monotonically away from y = 1. The condition f ′(1) = 2E/3, where E is the
ground state Young’s modulus for the virgin material, gives the appropriate ground-state conditions for an
isotropic virgin material [19].

We define a stress–strain path as a primary loading path when the stress–strain constitutive equation
can be characterised by the energy function given by Eq. (18).

3.2 Specific form

A special form of energy function is proposed in this section which simplifies the analysis of three-dimen-
sional problems and also simplifies the calculation of material constants via experimental data (see Sect.
6). The special form is

Wf =
3∑

i=1

r̂(λi, di) + Ccf̂ (λ1, λ2, λ3, d, s), (21)

where Cc ≥ 0 is a material constant. The function r̂ has the form

r̂(λi, di) =
∫ λi

1
η(g(y), di)

f (y)

y
dy ,

where the softening function η is introduced to soften the stress and hence has the property 0 <

η(g(λi), di) ≤ η(di, di) = 1. The condition f̂ (λ1, λ2, λ3, d, 0) = 0 is imposed so that the properties (a)

and (b) given in Sect. 3.1 are satisfied. To satisfy Eq. (16) we impose the requirements
∂η

∂di
< 0 and

∂ f̂
∂di

< 0, (i = 1, 2, 3).

3.2.1 Simple tension

On specialising to a simple tension deformation, where λ1 = λ, λ2 = λ3 = 1√
λ

, we have 1 ≤ λ ≤ λm. In

view of Eq. (7), we have, a1 = λm, a2 = a3 = 1√
λm

, d1 = g(λm), d2 = d3 = g
(

1√
λm

)
and s = 0. The

energy function becomes

Wf = r̂(λ, g(λm)) + 2r̂
(

1√
λ

, g
(

1√
λm

))
. (22)

and the non-zero principal Biot stress t takes the form

t=
η(g(λ), g(λm))f (λ)−η

(
g
(

1√
λ

)
, g

(
1√
λm

))
f
(

1√
λ

)

λ
. (23)

To obtain Eq. (23) we require the relation for the Biot stress T(1), i.e.,

T(1) = ∂Wf

∂U
− pU−1 , (24)

where p is the Lagrange multiplier associated with the incompressibility constraint. Equation (23) also

requires expressions for the components
(

∂Wf

∂U

)

ij
of

∂Wf

∂U
relative to the basis {ei}. These expressions are

given below:



J Eng Math (2006) 56:415–435 421

(
∂Wf

∂U

)

ii
= ∂Wf

∂λi
, (25)

(
∂Wf

∂U

)

ij
=

∂Wf

∂ei
• ej − ∂Wf

∂ej
• ei

2(λi − λj)
, λi �= λj , i �= j. (26)

It is assumed that Wf has sufficient regularity to ensure that, as λi approaches λj, Eq. (26) has a limit.
The derivations of Eqs. (25) and (26) are given in the Appendix since the relations are rarely used in the
literature. The stress–strain curve described by Eq. (23) is the elastic (nominal-strain) unloading path for
1 ≤ λ ≤ λm and Wf in Eq. (22) represents the area under this path from λ = 1 up to the strain λ ≤ λm.
Different values of λm give different elastic unloading paths. Hence the stress–strain constitutive Eq. (23)
represents infinitely many elastic unloading paths parameterised by λm. Different elastic unloading paths
correspond to different elastic materials. When this is generalised to a three-dimensional deformation, the
proposed energy function given by Eq. (12) characterises the softening material by a set containing infinite
different elastic materials parameterised by the tensors D and S, as exemplified by t and Wf in the simple

tension specialisation. Note that, when λ = λm, we have, η(g(λm), g(λm)) = η

(
g

(
1√
λm

)
, g

(
1√
λm

))
= 1

and the nominal stress has the value

t =
f (λ) − f

(
1√
λ

)

λ
(27)

which lies on the primary loading path.

3.3 Dissipation

If we treat the parameter D as an internal variable which describes an anisotropic damage effect char-
acterised by a softening of the material, we could then regard the parametric energy function Wf as a
free-energy function. With this in mind we will show that the free-energy function satisfies the Clausius–
Duhem inequality given by the relation

DIS = tr(T(1)U̇) − Ẇf ≥ 0 , (28)

where tr denotes the trace of a second-order tensor and the superposed dot represents, for example, the
time derivative. From det(U) = 1 (where det denotes the determinant of a tensor) we have tr(U−1U̇) = 0.
Hence tr(T(1)U̇) = tr((T(1) + pU−1)U̇). Note that

Ẇf = tr
(

∂Wf

∂U
U̇

)
+

3∑

i=1

∂Wf

∂di
ḋi, where ḋi = ġ(ai).

In view of the above and Eq. (28), since U̇ is arbitrary, we have the Biot stress given by Eq. (24). From
Eqs. (24) and (28) we have

DIS = −
3∑

i=1

∂Wf

∂di
ḋi. (29)

In view of Eq. (5) and the properties of g, it is clear that ḋi ≥ 0. Equation (16) ensures that DIS ≥ 0 which
is consistent with the Clausius–Duhem inequality that indicates energy dissipation.
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4 Uniaxial deformation

4.1 Ground-state Young’s moduli

In order to have a clearer picture of our model, we consider the following sequence of uniaxial deforma-
tions:

(i) The virgin material is loaded up to a maximal strain λm ≥ 1 and unloaded.
(ii) After deformation (i) the non-virgin material is compressed down to a minimal strain λc ≤ 1 and

unloaded.

In this type of deformation s = 0 and hence the Biot stress is coaxial with U and the principal Biot stress ti
(i=1,2,3) takes the simple form

ti = ηi(λi, ai)f (λi) − p
λi

, (30)

where for i = 1, 2, 3, ηi(λi, ai) = η(g(λi), g(ai)) and di = g(ai).

We only dicuss the case when ke = kc = 0 in Eq. (6). In deformation (i) we have λ1 = λ, λ2 = λ3 = 1√
λ

and 1 ≤ λ ≤ λm and during unloading

s1,max = λm s1,min = s2,max = s3,max = 1 , s2,min = s3,min = 1√
λm

.

The tensile axial stress during unloading for deformation (i) (λ,λm > 1) is given by Eq. (30). On differenti-
ating Eq. (30) with respect to λ and evaluating the derivative at λ = 1+, we obtain the damaged (softened)
ground-state “Young’s modulus” Et in the λ1-direction for simple tension (not compression), viz.

Et = 2E
3

η1(1
+, λm) + E

3
η2

(
1−,

1√
λm

)
. (31)

In Sect. 4.2 we show that the material is transversely isotropic with respect to the stress-free configuration
after deformation (i). With this in mind, we can easily show that during unloading in deformation (ii)

λ1 = λ ≤ 1, λ2 = λ3 = 1√
λ

, s1,max = λm, s1,min = λc , 1 ≥ λ ≥ λc

s3,max = s2,max = 1√
λc

, s3,min = s2,min = 1√
λm

.

The compressive axial stress is

t1 =
η1(λ, λc)f (λ) − η2

(
1√
λ

,
1√
λc

)
f
(

1√
λ

)

λ
. (32)

The simple compression ground-state Young’s modulus Ec in the λ1-direction is

Ec = 2E
3

η1(1
−, λc) + E

3
η2

(
1+,

1√
λc

)
. (33)

In general, the values of Ec and Et are different. For the undamaged material λm = λc = 1 and we have
Et = Ec = E, as expected.

4.2 Transverse isotropy

In this section we show that our model produces a transversely isotropic non-virgin material in the stress-
free state after a simple tension deformation as indicated by, e.g., by Horgan et al. [6]. Consider the
deformation (i) given in Sect. 4.1. During unloading the damage tensor D takes the form
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D = Dt = g(a1)ê1 ⊗ ê1 + g(a2)ê2 ⊗ ê2 + g(a3)ê3 ⊗ ê3, (34)

where êi = ei, a1 = pe(λm, 1) = amax and a2 = a3 = pc

(
1,

1√
λm

)
= amin. The above equation can be

written as

Dt = (g(amax) − g(amin))ê1 ⊗ ê1 + g(amin)I , (35)

where we have used the identity tensor I = ê1 ⊗ ê1 + ê2 ⊗ ê2 + ê3 ⊗ ê3 to obtain Eq. (35). The shear-
history tensor S takes the value 0 during unloading. The anisotropic fourth-order tensor ground-state
elastic modulus can be represented by the second derivative of Wf with respect to U (or C = U2) eval-
uated at U = I [20]. In view of Eqs. (12) and (35), the second derivative of Wf evaluated at U = U t =
λe1 ⊗ e1 + 1√

λ
e2 ⊗ e2 + 1√

λ
e3 ⊗ e3 is

∂2W̃

∂U2 (U t, Dt, 0) = ∂2Wt

∂U2 (U t, ê1 ⊗ ê1) , (36)

where W̃(U, Dt, 0) = Wt(U, ê1 ⊗ ê1) and we have treated λm as a material constant. The stress-free ground
state is reached when λ → 1 and we write I+ = limλ→1 U t. Hence, the second derivative of Wf at ground-
state configuration takes the form

∂2Wt

∂U2 (I+, ê1 ⊗ ê1) . (37)

Essentially, I+ = I and the fourth-order ground-state tensor modulus of a transversely isotropic material
is represented by Eq. (37) [16]. This indicates that, in a uniaxial deformation, such as simple tension defor-
mation, the proposed model produces a transversely isotropic material relative to the non-virgin stress-free
unloaded state.

5 Application to simple homogeneous deformations

To further validate our anisotropic theory we study several types of simple homogeneous deformation.
Some of our results are, qualitatively, compared with the experimental data of Pawelski [10]. For the
purpose of illustration we consider

f (λ) = E
(

2
3

log(λ) + 2
3
(e1−λ + λ − 2)

)

and use E = 3
2

MPa for the virgin ground state Young’s modulus. The damage function is assumed to have

the form

g(x) =




x − 1 when x ≥ 1,
1
x2 − 1 when x ≤ 1.

(38)

In all the figures, the term “strain” means the (relevant) principal stretch.

5.1 Plane-strain compression in different directions and Pawelski’s [10] experiment

Let (x1, x2, x3) and (X1, X2, X3) be the Cartesian components of x and X, respectively. Initially, the virgin
material is compressed in the X2-direction down to a minimal strain λm and then unloaded. After this
deformation we consider homogeneous plane-strain compressions in different directions where the angle
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θ of direction is subtended from the X1-axes in an anticlockwise direction. The axes of X are fixed in
space.∗We note that this type of deformation may be cumbersome (or impossible) to simulate practically
since it may involve cutting some part of the material so that a homogeneous plane-strain compression
can be performed practically. However, theoretical investigation of this type of deformation is useful for
studying the anisotropic behaviour of a Mullins material. Initially the axes for the vectors x and X coin-
cide. For a compression at an angle θ , the in-plane axes for the vector x rotate by the same angle and
the compression load is applied parallel to the x2-axes. Hence the deformation can be described by the
equations

x1 = 1
λ

(X1c + X2s), x2 = λ(−X1s + X2c), x3 = X3 , (39)

where c = cos(θ) and s = sin(θ). We restrict ourselves to the intervals 0 ≤ θ ≤ π

2
and 1 ≥ λ ≥

λm.
The principal direction components of U take the form

e1 =



c
s
0


 e2 =




−s
c
0


 e3 =




0
0
1


 (40)

and the principal stretches take the values

λ1 = 1
λ

, λ2 = λ, λ3 = 1 . (41)

In this section we only consider ke = kc = 0. Virgin loading is applied by starting at time t = 0 and at θ = 0
down to a minimal strain λ = λm and is then unloaded until it is in a stress-free configuration. We let t = t1
when this configuration is reached and denote this deformation by def(A). After deformation def(A) the
non-virgin material is reloaded in a different or the same direction down to a minimal strain λm, taking
note of statement∗ above.

Let

ŝi,max = max
0≤z≤t1

√
ei • U2(z)ei, ŝi,min = min

0≤z≤t1

√
ei • U2(z)ei . (42)

With a little algebra the optimised values can be written:

ŝ1,max =





√(
1

λ2
m

− λ2
m

)
c2 + λ2

m , 1 ≥ c >
λm√

1 + λ2
m

1 , 0 ≤ c ≤ λm√
1 + λ2

m

, (43)

ŝ1,min=





1 , 1 ≥ c ≥ √
0·5

√
2c

√
1 − c2 ,

√
0.5 > c ≥ λ2

m√
1 + λ2

m√(
1

λ2
m

− λ2
m

)
c2 + λ2

m , 0 ≤ c <
λ2

m√
1 + λ2

m

, (44)



J Eng Math (2006) 56:415–435 425

ŝ2,max =





√(
1

λ2
m

− λ2
m

)
s2 + λ2

m , 1 ≥ s >
λm√

1 + λ2
m

1 , 0 ≤ s ≤ λm√
1 + λ2

m

, (45)

ŝ2,min =





1 , 1 ≥ s≥√
0·5

√
2s

√
1 − s2 ,

√
0.5 > s≥ λ2

m√
1 + λ2

m√(
1

λ2
m

− λ2
m

)
s2+λ2

m , 0 ≤ s<
λ2

m√
1 + λ2

m

, (46)

ŝ3,max = ŝ3,min = 1. (47)

The maximum and minimum values for the principal-direction line elements during reloading when 1 ≥
λ ≥ λm are

si,max =




ŝi,max , 1 ≤ λi ≤ ŝi,max

λi , ŝi,max < λi ≤ 1
λm

(48)

si,min =
{

ŝi,min , 1 ≥ λi ≥ ŝi,min

λi , ŝi,min > λi ≥ λm
. (49)

In the case of re-loadings at θ = 0 and θ = 90 degrees it can be easily shown that s = 0. However, s �= 0 for
re-loadings not at 0 and 90 degrees; in this case, for simplicity of calculation, we only consider a material
with the material constant Cc = 0. Results for Cc �= 0 will be dealt with in the near future. Hence, for
re-loading in any direction the Biot stress is coaxial with U. The compressive principal Cauchy stress then
takes the form

σ2 = σv = f (λ) − f
(

1
λ

)
(50)

for loading from a virgin state and

σ2 = σn = η2(λ, s2,min)f (λ) − η1

(
1
λ

, s1,max

)
f
(

1
λ

)
(51)

for unloading. Its clear that

|σv| ≥ |σn|

since 0 < ηi ≤ 1, f (λ) ≤ 0 and f
(

1
λ

)
≥ 0. In Fig. 1 we depict the compressive stress-deformation for

λm = 1
2

, virgin loading at an angle θ = 0, unloading and reloadings after deformation def(A) at angles

θ =0, 30, 45, 90 degrees.
It is clear from Fig. 1 that, as the angle θ increases, the compressive stress becomes less softened. In the

case when the angle θ = 90 degrees, the stress–strain curve behaves similarly to the virgin stress–strain
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curve, i.e., as if the material is not softened; this behaviour is close to that indicated empirically in Pawelski’s
experiment [10] and is described theoretically below. In the 90 degrees case we have

ŝ1,max = 1, ŝ1,min = λm, ŝ2,max = 1
λm

, ŝ2,min = 1.

Hence

s2,min = λ , s1,max = 1
λ

, σ2 = η2(λ, λ)f (λ) − η1

(
1
λ

,
1
λ

)
f
(

1
λ

)
= f (λ) − f

(
1
λ

)
(52)

since η2(λ, λ) = η1

(
1
λ

,
1
λ

)
= 1. This stress is equal to σ2 given in Eq. (50) for the virgin loading.

If after unloading the material from the 90 degree reloading, it is reloaded at 0 degree, we have

s1,max = 1
λm

s2,min = λm , s1,min = λm , s2,max = 1
λm

. (53)

The compressive stress is

σ2 = σn = η2(λ, s2,min)f (λ) − η1

(
1
λ

, s1,max

)
f
(

1
λ

)
, (54)

which is the same as the stress given in Eq. (51). This behaviour is also indicated by Pawelski [10], i.e., the
softening behaviour is not reduced, even after a perpendicular compression down to λ = λm.

5.2 Simple shear in different directions

In this section we investigate simple shear deformations where the principal directions of U change contin-
uously during the deformation. Here, we only consider the case for a Cc = 0 material and damage points
with ke = kc = 0. Hence the Biot stress is always coaxial with U.

5.2.1 Virgin loading and reloading in the same direction

Here we let the axes of x and X to coincide and the deformation can be described by the equations

x1 = X1 + γ X2, x2 = X2, x3 = X3, (55)

where 0 ≤ γ ≤ γm and γ is commonly called the amount of shear. Let θ denote the orientation (in the anti-
clockwise sense relative to the X1-axis) of the in-plane Lagrangean principal axes. The angle θ is restricted
according to Ogden [21]:
π

4
≤ θ <

π

2
. (56)

The principal directions have the components

e1 =



c
s
0


 e2 =




−s
c
0


 e3 =




0
0
1


 , (57)

where c = cos(θ) and s = sin(θ). It can be easily shown that the principal stretches take the values

λ1 = γ + √
γ 2 + 4
2

≥ 1, λ2 = 1
λ1

=
√

γ 2 + 4 − γ

2
≤ 1, λ3 = 1 (58)

and

c = 1√
1 + λ2

1

, s = λ1√
1 + λ2

1

, tan(2θ) = − 2
γ

, tan(θ) = λ1. (59)
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Consider the following sequence of deformations:

(i) the virgin material is subjected to a simple shear deformation up to γ = γm and then unloaded;
(ii) The non-virgin material is reloaded in the same direction up to γ = γm.

For the deformation (ii) we have, for fixed c and s,

s1,max = max
0≤γ≤γm

√
(γ s + c)2 + s2, s1,min = min

0≤γ≤γm

√
(γ s + c)2 + s2,

s2,max = max
0≤γ≤γm

√
(γ c − s)2 + c2, s2,min = min

0≤γ≤γm

√
(γ c − s)2 + c2, (60)

s3,max = s3,min = 1

Upon a little analysis we get

s1,max =
√

(γms + c)2 + s2, s1,min = 1 , 0 ≤ γ ≤ γm , γm ≥ 0

For 0 ≤ γm ≤ 2

s2,max = 1 , 0 ≤ γ ≤ γm

and for γm > 2

s2,max =





√
(γmc − s)2 + c2 , 0 ≤ γ ≤ γ 2

m − 4
2γm

,

1 ,
γ 2

m − 4
2γm

< γ ≤ γm

.

For γm > 1

s2,min =





c , 0 ≤ γ <
γ 2

m − 1
γm√

(γmc − s)2 + c2 ,
γ 2

m − 1
γm

≤ γ ≤ γm

.

and for 0 ≤ γm ≤ 1

s2,min =
√

(γmc − s)2 + c2 0 ≤ γ ≤ γm.

The shear components σ12 of the Cauchy stress for the deformations are:

σ12 = (f (λ1) − f (λ2))ĉŝ (61)

for the virgin loading deformation (i) and

σ12 = [η1(λ1, s1,max)f (λ1) − η2(λ2, s2,min)f (λ2)]ĉŝ (62)

for unloading in deformation (i) and reloading in deformation (ii). The terms ĉ and ŝ are given by

ĉ = 1√
1 + λ2

2

, ŝ = λ2√
1 + λ2

2

.

Figure 2 depicts the loading and unloading curves for γm = 2 and γm = 3. It is clear from the figure that
the stress-deformation curves behave as expected.
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5.2.2 Reloading in the opposite direction

In this section, for simplicity we only consider γm = 2. Consider the following sequence of deformations:

(i) the virgin material is subjected to a simple shear deformation up to γ = γm = 2 and then unloaded.
(ii) The non-virgin material is reloaded in the opposite direction up to γ = γm = 2.

Here we have, for deformation (ii)

e1 =



−c
s
0


 e2 =




s
c
0


 e3 =




0
0
1


 ,

where c = cos(α), s = sin(α) and
π

4
≤ α <

π

2
.

Let t1 be the time after deformation (i) is completed and

ŝi,max = max
0≤z≤t1

√
ei • U2(z)ei

ŝi,min = min
0≤z≤t1

√
ei • U2(z)ei ,

We then have

ŝ1,max =
√

(2s − c)2 + s2 , ŝ1,min = s ,
π

4
≤ α ≤ tan−1(1 + √

2),

ŝ2,max =
√

(2c + s)2 + c2 , ŝ2,min = 1 ,
π

4
≤ α ≤ tan−1(1 + √

2).

The maximum and minimum values for the relevant principal-stretch line elements when 0 ≤ γ ≤ 2 are

s1,max =
{

ŝ1,max , 1 ≤ λ1 ≤ ŝ1,max

λ1 , ŝ1,max < λ1 ≤ 1 + √
2,

s2,min =
{

ŝ2,min , 1 ≥ λ2 ≥ ŝ2,min

λ2 , ŝ2,min > λ2 ≥ √
2 − 1,

s3,min = s3,max = 1.
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Fig. 4 Mullins and Tobin’s [2] simple tension data

5.2.3 Reloading in a direction perpendicular to the initial plane of shear

In this section, for simplicity we only consider γm = 2. Consider the following sequence of deformations:

(i) the virgin material is subjected to a simple shear deformation up to γ = γm = 2 and then unloaded.
Let t1 be the time for this deformation.

(ii) The non-virgin material is reloaded in a direction perpendicular to the initial plane of shear up to
γ = γm = 2.

Here we have, for deformation (ii)

e1 =



0
s
c


 e2 =




0
c

−s


 e3 =




1
0
0


 ,

where c, s and α are defined in Sect. 5.2.2. We then have for t1, ŝi,max and ŝi,min defined in Eq. (42)

ŝ1,max =
√

4s2 + 1 , ŝ1,min = 1 ,
π

4
≤ α ≤ tan−1(1 + √

2),

ŝ2,max =
√

4c2 + 1 , ŝ2,min = 1 ,
π

4
≤ α ≤ tan−1(1 + √

2).

The maximum and minimum values for the relevant principal-stretch line elements when 0 ≤ γ ≤ 2 are

s1,max =
{

ŝ1,max , 1 ≤ λ1 ≤ ŝ1,max

λ1 , ŝ1,max < λ1 ≤ 1 + √
2

,

s2,min =
{

ŝ2,min , 1 ≥ λ2 ≥ ŝ2,min

λ2 , ŝ2,min > λ2 ≥ √
2 − 1

.

s3,min = s3,max = 1.

Figure 3 depicts results for various loadings given in this section. The theory closely predicts the experi-
mental results of Muhr et al. [11]; they stated that “the softening is greatest for simple shear in the same
direction, least for simple shear in the opposite direction and intermediate for shear at 90 degrees”.
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6 Comparison with experimental data

In this section we compare our theory with the experimental data of Mullins and Tobin [2], Mullins [22] and
Gough [9] on simple tension and pure shear. For the sake of brevity we shall only use the isotropic scalar
function proposed by Shariff [19], taking note that this form will only require a small number of linear
equations to be solved when a curve-fitting method is used to obtain its parameter values [19]. According
to [19] the component f of the energy function for the virgin material takes the form

f (λ) = E
n∑

i=0

αiφi(λ) , (63)

where αi (i = 1, 2, . . . , n) are parameters with α0 = 1 and φis are sufficiently smooth functions such that
φ0(1) = 0, φ0

′(1) = 2
3 , φi(1) = φi

′(1) = 0, (i = 1, 2 . . . , n). Specific forms for the functions φi , are

φ0(λ) = 2 log(λ)
3 , φ1(λ) = e(1−λ) + λ − 2 , φ2(λ) = e(λ−1) − λ , φ3(λ) = (λ−1)3

λ3·6 ,

φj = (λ − 1)j−1, j = 4, 5, . . . , n.
(64)

The function r takes the form

r(λ) = E
n∑

0

αi�i , �i =
∫ λ

1

φi(s)
s

ds.

The αi values are obtained via the least-squares method similar to that described in [19]. The value n = 3
is sufficient to fit the virgin data.

For simplicity we use g given in Eq. (38) and ηi takes the form

ηi = e(g(λi)−g(ai))b(g(λi),g(ai)). (65)

We consider only the case when ke = kc = 0. The function b in Eq. (65) is assumed to be of polynomial
form, i.e.,

b(y, ym) =
n1∑

i=0

bi(ym)yi , (66)

where we assume

bi(ym) =
n2∑

j=0

bi,jy
j
m . (67)

It is shown later that this form only requires a few terms to fit the data and the values of bi,j are easily
obtained from a linear system of equations given in Eq. (67), where the values for bi are obtained via a
linear least-squares method based on the natural logarithm. For the simple tension data, the theoretical
tensile principal stress σ2 takes the form

σ2 = η2(λ, s2,max)f (λ) − η3

(
1√
λ

, s3,min

)
f
(

1√
λ

)
, (68)

where 1 ≤ λ ≤ s2,max. Since s3,min = s1,min = 1√
s2,max

and, in view of Eqs. (65–67), we have

η2(λ, s2,max) = η3

(
1√
λ

, s3,min

)
. (69)

Hence

σ2 = η2(λ, s2,max)

(
f (λ) − f

(
1√
λ

))
. (70)
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For the least-squares method we minimise the expression

Er =
∑

j

(
log

(
η2(xj, s2,max)

(
f (xj)−f

(
1√
xj

)))
− log(xjzj)

)2

, (71)

where xj and zj are the experimental strain and nominal stress values, respectively. The above minimising
statement is equivalent to minimising

Ed =
∑

j

( n1∑

i=0

bi(s2,max)(xj − s2,max)xi
j − dj

)2

, (72)

where dj = log




xjzj

f (xj) − f

(
1√
xj

)




, which is suitable for the linear least-squares method to obtain the bi

values. The bi,j coefficients are then obtained via a system of linear equations using Equation (67). For
Mullins and Tobin’s [2] and Mullins’s [22] data we use the values n1 = 2 and n2 = 2 for the functions b and
bi, respectively, s2,max = 2·04, 3·06, 4 for Mullins’s [22] data and s2,max = 2, 3, 4·02 for the Mullins and Tobin
[2] data.

The parameter values for the isotropic scalar function in Gough’s [9] pure shear data are obtained in
a similar fashion to the simple tension data. For the isotropic scalar function in pure shear we only need
n = 3 to fit the components of the Cauchy principal stress

σ1 = f (λ) − f
(

1
λ

)
, σ2 = −f

(
1
λ

)
(73)

to the data, where 1 ≤ λ ≤ s1,max = 2. For the non-virgin material the reloading data of the stresses σ1 − σ2
and σ2 are used to obtain the bi values. We only need to use the value n1 = 2 to fit the data. In order to
obtain a unique solution for the parameters bi,j the value n2 = 1 is used. In this case

σ1 − σ2 = η1(λ, 2)f (λ), σ2 = −η3

(
1
λ

,
1
2

)
f
(

1
λ

)
, (74)

taking into account that λ2 = 1 and f (1) = 0.
The curve-fitted values of the parameters are: Mullins and Tobin [2]:

E = 37·063 kg/cm2, α1 = −2·900, α2 = −0·074, α3 = 7·187

b0,0 = 73·982, b0,1 = −44·103, b0,2 = 6·395

b1,0 = −98·162, b1,1 = 58·243, b1,2 = −8·418

b2,0 = 33·288, b2,1 = −19·566, b2,2 = 2·813

Mullins [22]:

E = 55.826 kg/cm2, α1 = −3·958, α2 = −0·161, α3 = 9·072

b0,0 = −10·378, b0,1 = 2·308, b0,2 = 0·085
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Fig. 8 Predicting Gough’s [9] data

b1,0 = 16·122, b1,1 = −5·447, b1,2 = 0·3454

b2,0 = −4·8153, b2,1 = 1·909, b2,2 = −0·1696

Gough [9]:

E = 2·270 MPa, α1 = 0·225, α2 = 0·860, α3 = −0·074

b0,0 = 49·066, b0,1 = −12·268

b1,0 = −68·933, b1,1 = 17·252

b2,0 = 24·935, b2,1 = −6·233

In Figs. 4–7 we observe that the theoretical curves fit very well with the experimental data. Using the
parameter values given above we predict (not curve-fitted) the deformations shown in Figs. 8 and 9. Our



J Eng Math (2006) 56:415–435 433

SimpleTension

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 1.5 2 2.5

strain

n
o

m
in

al
 s

tr
es

s 
M

P
a

Unloading
Experimental  data
Primary Loading
Experimental Data
Predicted curve

Fig. 9 Predicting Gough’s [9] simple tension data

theory predicts the actual stress-deformation data reasonably well. We note that the data in Fig. 8 cannot
be predicted using an isotropic constitutive equation of the form

T = ηs(λ1, λ2, αm)
∂Ŵ
∂U

(λ1(U), λ2(U), λ3(U)) − pU−1, (75)

where αm is a measure of an amount of damage and 0 < ηs ≤ 1.

7 Concluding remarks

Most of the constitutive models in the current literature describing the Mullins effect are based on iso-
tropic stress-softening. However, stress-softening, in general, is an inherently anisotropic phenomenon. In
this paper we describe this strain-induced anisotropic behaviour via a parametric energy function which
depends explicitly on the principal stretches and the principal directions. The material parameters in the
energy function are second-order symmetric tensors D and S, which measures the amount of damage caused
by deformation and capture the effect of shear-history on stress-softening, respectively. We introduce the
terms damage function and damage point here to facilitate our analysis of the proposed constitutive equa-
tion. We only discuss a class of energy functions which is a subset of a wider class of energy functions
proposed in Sect. 3 and this discussion may provide insight into the construction of a more general and
wider class of functions.

Since our approach is new and quite different from that reported elsewhere on stress-softening rubber
mechanics, to further validate our anisotropic theory, we extensively discuss our results for various types
of homogenous deformations. It is found that our theory compares fairly well with several anisotropic
experimental results, and we have shown that predictions are consistent with expected behaviour. We
have also shown that the proposed model produces a transversely isotropic material with respect to the
stress-free configuration after unloading from a simple tension deformation. To the best of our knowledge,
we believe that no previous models have managed to achieve the above-mentioned results.

So far we have shown that our theory predicts fairly well by just using the first (non-shear) term of the
parametric energy function given by Eq. (21). The second (shear) term in Eq. (21) is not used at all in
the predictions. However, in the near future we need to analyse the role of the second term in Mullins’s
induced anisotropy and this requires appropriate experimental data for S �= 0.



434 J Eng Math (2006) 56:415–435

Appendix. Components of
∂Wf

∂U
relative to the basis {ei}

Let U= ∑3
i=1 λiei ⊗ ei, where λi are the principal stretches. Then

(dU)ij = dλiδij + (λj − λi)ei • dej (76)

are the differential components of dU relative to the orthonormal basis ei (see, e.g., [21]). Let

Wf = W̃(U, D, S) = W̄(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, D, S) . (77)

Then

dWf = tr
(

∂Wf

∂U
dU

)
=

3∑

i,j=1

(
∂Wf

∂U

)

ij
(dU)ij =

3∑

i=1

(
∂Wf

∂λi
dλi + ∂Wf

∂ei
• dei

)
, (78)

where
(

∂Wf

∂U

)

ij
are the components of

∂Wf

∂U
relative to the basis {ei}. In view of Equations (76) and (78),

since dλi is arbitrary, we have(
∂Wf

∂U

)

ii
= ∂Wf

∂λi
, i not summed (79)

In order to evaluate the shear components(
∂Wf

∂U

)

ij
, i �= j (80)

we take note that

ei • ej = δij (81)

and

dei • ej + ei • dej = 0. (82)

For i = j we have dei • ei = 0 and we can deduce, via orthogonal subspaces, that

de1 = da12e2 + da13e3, de2 = da21e1 + da23e3, de3 = da31e1 + da32e2 (83)

where daij’s are arbitrary but not fully independent, as shown below. From Eqs. (82) and (83) for i �= j we
can deduce that
daij = −daji (84)

We are now in a position to derive, for example, the expression for the term
(

∂Wf

∂U

)

12
=

(
∂Wf

∂U

)

21
,

taking note that
∂Wf

∂U
is symmetric. From Eq. (78) we see that

. . .

(
∂Wf

∂U

)

12
(dU)12 +

(
∂Wf

∂U

)

21
(dU)21 + · · · = · · · ∂Wf

∂e1
• de1 + ∂Wf

∂e2
• de2 . . . (85)

Substituting Eqs. (76) and (83) in Eq. (85), taking note of Equation (84) and the fact that da12 is arbitrary,
we have

(
∂Wf

∂U

)

12
=

∂Wf

∂e1
• e2 − ∂Wf

∂e2
• e1

2(λ1 − λ2)
. (86)

Similarly we can easily show that

(
∂Wf

∂U

)

ij
=

∂Wf

∂ei
• ej − ∂Wf

∂ej
• ei

2(λi − λj)
. (87)
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